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Abstract

This theoretical study explores the influence of inertia, surface tension, and viscous dissipation on the transient heat

transfer during the growth and collapse of fluid shells. The shell is spherical, the fluid is Newtonian, and the flow is

induced by a constant driving pressure. The coupled heat and flow equations are solved numerically using the Cobody

(Lagrangian) transformation and a central difference discretization in space. The results are described in terms of four

dimensionless numbers, namely, the Reynolds number, the capillary number, the Peclet number and the Brinkman

number. In particular, it is found that viscous dissipation and surface tension have a significant effect on the tem-

perature evolution within the fluid, namely on the temperature buildup within the fluid shell.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Research on the growth and collapse of shells and

bubbles has a long history. The problem is of consid-

erable fundamental interest in transport phenomena as

an example of time-dependent free-boundary problem

involving the interaction among heat, mass and mo-

mentum transfer. This flow configuration also enjoys

several practical applications in industrial processes such

as the manufacture of foam and microcellular materials

[1], and can be related to blow molding and thermo-

forming [2].

Microcellular polymers are foam material with cell

sizes of less than or equal to 10 lm. They are used in a

wide variety of applications such as separation media,

adsorbents, controlled release devices and light-weight

materials with impact strength [3]. In forming a micro-

cellular material, a gas such as carbon dioxide (CO2) is

first dissolved into a molten polymer under supercritical

conditions, i.e., above the CO2�s critical temperature and

pressure, to form a homogeneous polymer solution.

Phase separation is then induced by either reducing

sharply the pressure or the temperature resulting in

the nucleation of a myriad of gas bubbles. The size of

the final bubbles depends on several factors such as the

number of nucleation sites, the initial gas concentration,

the growth dynamics of the bubbles, the polymer

properties such as diffusion coefficient, viscosity, elas-

ticity, etc. The theoretical problem of predicting the cell

size in foam materials is extremely complex. Some of the

specific issues are described below.

One of the fundamental problems is the pressure

history in the bubble. Initially, the fluid has to be at high

pressure so that nucleation is prevented. Phase separa-

tion will start when the pressure falls below a certain

threshold. Therefore, the initial pressure in the gas

bubble can be taken as the threshold pressure. The dif-

ference between the initial fluid pressure and the

threshold pressure provides the driving force for the

bubble growth. This is the typical approach of earlier

researchers. However, this is only the initial driving

force. Once the bubble starts to grow, this driving

pressure will certainly change, which has to be deter-

mined from the diffusion of gas into the bubble. The
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pressure history in the bubble will then depend on the

mass of material accumulated inside, its temperature

and the size of the bubble.

Another problem is the effect of viscoelasticity on the

growth of the bubble. Even though many researchers

agree on some general behavior, the results vary widely

with the choice of constitutive equations. One of the

difficulties with viscoelasticity is a larger set of equations

to be solved and the breakdown of the solution at a fi-

nite level of elasticity [4]. Besides viscoelasticity, the

viscosity of the material is also of particular importance,

especially the elongational viscosity since the deforma-

tion in the bubble is essentially biaxial. The inflation

dynamics of a spherical shell is similar to that of the

growth or collapse of a spherical gas bubble in an infi-

nite Newtonain or viscoelastic medium; a spherical

bubble is just a spherical shell of infinite thickness. Both

configurations give rise to biaxial elongational flow.

Fogler and Goddard [5] analyzed the decay of a bubble,

initially at rest and later subject to a constant driving

pressure for a Maxwell fluid. The elasticity of the fluid

surrounding the spherical bubble was found to retard

the collapse of the bubble and give rise to a time oscil-

latory behavior that is absent for a Newtonian fluid. It

was also found that the oscillatory motion is particularly

enhanced whenever the relaxation time is large com-

pared to the Rayleigh collapse time, i.e., at large Deb-

orah number. Tanasawa and Yang [6], and Ting [7] used

a three-parameter Oldroyd model [8] and predicted a

similar behavior. Pearson and Middleman [9,10] and

later Johnson and Middleman [11] measured the decay

of a bubble, subjected to an initial sudden pressure drop,

collapsing in a large polymeric melt. The evolution of

the bubble radius was monitored and was found to de-

cay monotonically as in the case of a purely Newtonian

fluid. Inertial effects were neglected and no oscillatory

behavior was predicted. However, the calculations of

Khayat and Garcia-Rejon [12] for a viscoelastic fluid

confirm that, had inertia effects been included in Refs.

[9–11], the resulting decay of the bubble radius would

have been oscillatory.

Oscillations in statically stressed (that is, under con-

stant driving pressure) viscoelastic fluids, which are ab-

sent for Newtonian fluids, are the result of normal

stresses (which lead to the Weissenberg rod-climbing

phenomenon [8]). Recent theoretical and experimental

works on polymer melts and solutions give ample evi-

dence of the existence of oscillatory behavior [12]. The

discrepancy between theory and the experiments of

Middleman and co-workers [9–11], particularly the fact

that theoretically predicted oscillations are not observed

in reality, is fundamentally important to understand.

Recently, Khayat [13] addressed the origin of the dis-

crepancy between theory and experiment for statically

stressed systems. In particular, the work focused on the

inflation of a spherical shell of a viscoelastic liquid

subject to a time-dependent driving pressure.

Other aspects such as compressibility, gas diffusion

and non-isothermal influences are also important, but

have been largely ignored in the literature [14,15]. Ear-

lier, Barlow and Langlois [16] examined the gas diffusion

from a Newtonian fluid into an expanding bubble. Street

et al. [17] examined the growth of a gas bubble in viscous

power-law liquids considering the effect of heat, mass,

and momentum transfer. In relation to foam molding,

Han and Yoo [18] modeled the expansion foam by

Nomenclature

Br Brinkman number

CP heat capacity at constant pressure, J/(KgK)

Ca capillary number

k thermal conductivity, W/(cmK)

N number of nodes

P dimensionless pressure

Pe Peclet number

r dimensionless radial position

R dimensionless radius of inner shell surface

R0 initial radius of the bubble, cm

Re Reynolds number

Rr initial outer to inner radius ratio

S dimensionless radius of outer shell surface

t dimensionless time

t0 dimensionless time from Lagrangian trans-

formation

T dimensionless temperature

Tmax dimensionless maximum temperature

T0 reference temperature, K

u dimensionless radial velocity

u velocity vector, cm/s

x dimensionless Lagrangian coordinate posi-

tion

xi dimensionless Lagrangian coordinate posi-

tion at ith node

D dimensionless mesh size

DP dimensionless driving pressure

c surface tension coefficient, dyne/cm

l viscosity, g/(cm s)

q density, g/m3

Subscripts

r partial differentiation with respect to radial

position

t partial differentiation with respect to time
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considering the growth of a single bubble in an infinite

liquid medium, and conducted experiments as well.

Amon and Denson [19,20] introduced a cell model to

account for the depletion of gas, with finite amount of

liquid being stretched during the bubble expansion in

foam processing. More recently, Arefmanesh and Ad-

vani [21] carried out a numerical study based on a

polynomial representation of the gas concentration

around the bubble under isothermal situations.

Non-isothermal effects have received very little at-

tention despite their impact on bubble and shell dy-

namics. Arefmanesh and Advani [22] examined the

non-isothermal bubble growth in polymeric foams.

There was, however, essentially no discussion of the

actual heat transfer involved. Moreover, the important

dissipative mechanism in the energy was neglected. In

this study, a systematic theoretical work is attempted to

assess the impact of inertia, convection, dissipation and

surface tension on the heat transfer during the growth

and collapse of spherical shells of Newtonian fluids. The

problem is formulated in Section 2, and the solution

procedure is also presented in that section. The influence

of the various parameters in the problem is examined in

detail in Section 3. Concluding remarks are given in

Section 4.

2. Problem formulation and solution procedure

The general equations for a Newtonian fluid spheri-

cal shell with the boundary and initial conditions, and

the solution procedure are presented in this section.

Given the symmetry of the flow, the problem reduces to

a transient one-dimensional flow.

2.1. General equations

The fluid is assumed to be incompressible of density

q, viscosity l, surface tension coefficient c, heat capacity
Cp, and thermal conductivity k. These properties are

assumed to be constant. The flow is induced by the ac-

tion of a constant driving pressure acting on the inner

shell surface. The temperatures are assumed fixed at the

inner and outer surfaces. The governing equations are

cast in dimensionless form. Let DP be the magnitude of

the constant driving pressure so that the reference ve-

locity is V ¼ ðDP=qÞ1=2. The reference length and time

are, respectively, the initial radius R0 of the inner shell

surface and R0=V , while the temperature, T0, at the outer
surface is taken as the reference temperature. The pres-

sure is non-dimensionalized with respect to qV 2.

The conservation of mass and momentum equations,

as well as energy equation may be, respectively, written

generally in dimensionless forms as

r � u ¼ 0; ð1Þ

Re
ou

ot

�
þ u � ru

�
¼ �Rerp þr2u; ð2Þ

Pe
oT
ot

�
þ u � rT

�
¼ r2T þ Brru : ru; ð3Þ

where r is the gradient operator, t is the time, T is the

temperature, p is the pressure, and u is the velocity

vector. There are five dimensionless groups in the

problems, namely the Reynolds number, Re, Peclet

number, Pe, Brinkman number, Br, capillary numbers,

Ca, as well as the initial outer-to-inner surface radius

ratio, Rr. These are explicitly and respectively given by

Re ¼ qVR0

l
; Pe ¼ R0V qCp

k
; Br ¼ lV 2

kT0
;

Ca ¼ lV
c

; Rr ¼
S0 � R0

R0

;

ð4Þ

where S0 is the initial radius of the outer shell surface.

2.2. Problem formulation

Consider the fluid at any time t occupying the region

of a spherical shell of inner and outer radii RðtÞ and SðtÞ,
respectively. The flow is assumed to be spherically

symmetric, thus reducing to a transient one-dimensional

problem in the radial direction, r. More explicitly, the

conservation of mass and momentum as well as energy

Eqs. (1)–(3) reduce to

ur þ 2
u
r
¼ 0; ð5Þ

Reðut þ uurÞ ¼ �Repr þ 2urr þ
2

r
ur
�

� u
r

�
; ð6Þ

Pe Ttð þ uTrÞ ¼
2

r
Tr þ Trr þ 2Br u2r

�
þ 2

u
r

� �2�
; ð7Þ

where u is the radial velocity component. A subscript

denotes partial differentiation.

The boundary conditions for the problem are im-

posed on the shell surfaces. The dynamic condition gives

�RepðR; tÞ þ 2urðR; tÞ �
2

CaRðtÞ ¼ �Re 8t > 0; ð8aÞ

�RepðS; tÞ þ 2urðS; tÞ þ
2

CaSðtÞ ¼ 0 8t > 0: ð8bÞ

In the present work, the air inside the shell is assumed to

be motionless. The dynamic boundary conditions (8) are

derived under equilibrium conditions. Their validity

under dynamics conditions is usually simply assumed.

For further discussion on the validity of this assump-

tion, the reader is referred to [23,24]. The kinematic

conditions simply reduce to

uðr ¼ R; tÞ ¼ _RR; uðr ¼ S; tÞ ¼ _SS 8t > 0: ð9Þ
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The temperature is also prescribed at the inner and outer

shell surfaces, such that

T ðr ¼ R; tÞ ¼ 2; T ðr ¼ S; tÞ ¼ 1 8t > 0: ð10Þ

Finally, regarding the initial conditions, the fluid is as-

sumed to be initially at rest:

uðr; t6 0Þ ¼ 0 8r 2 ½1;Rr�: ð11Þ

The temperature is assumed to obey the steady-state

distribution that satisfies conditions (10). In other

words,

T ðr; t6 0Þ ¼ Rr þ 1

Rr

� �
1

r
þ Rr � 1

Rr
: ð12Þ

The problem is now reduced to an initial-value system.

2.3. Reduced equations

The integration of Eq. (5) and use of conditions (9)

lead to the following expressions:

uðr; tÞ ¼
_RRðtÞR2ðtÞ

r2
¼

_SSðtÞS2ðtÞ
r2

8r 2 ½RðtÞ; SðtÞ�: ð13Þ

Integration of Eq. (6) over r between the inner and outer

surfaces, and eliminating the pressure from conditions

(8) and the radial velocity component from (13), lead to

Re RðR€RR
�

þ 2 _RR2Þ 1

R

�
� 1

S

�
� 1

2
ðR2 _RRÞ2 1

R4

�
� 1

S4

��

¼ Re� 2

Ca
1

R

�
þ 1

S

�
þ 4 _RR

R2

S3

�
� 1

R

�
; ð14Þ

where it is observed, from (13), that the evolution of the

outer surface radius is related to RðtÞ through

SðtÞ ¼ ½RðtÞ3 � 1þ ðRr þ 1Þ3�1=3: ð15Þ

The energy Eq. (7) is accordingly reduced to

Pe Tt

 
þ

_RRR2

r2
Tr

!
¼ 2

r
Tr þ Trr þ 12Br

_RRR2

r3

 !2

: ð16Þ

2.4. Solution procedure

The energy Eq. (15) is recast in terms of Langrangian

coordinates (x; t0) according to the transformation

r ¼ ðxþ R3Þ1=3; t ¼ t0; ð17Þ

which is originally due to Epstein and Plesset [25]. This

transformation is useful as it allows the spatial integra-

tion to be carried out over a fixed interval x 2
b0; ðRr þ 1Þ3 � 1c as opposed to the time-dependent in-

terval r 2 ½RðtÞ; SðtÞ�. Furthermore, the transformation

allows the elimination of the convective term, such that

PeTt ¼ 12ðxþ R3Þ1=3Tx þ 9ðxþ R3Þ4=3Txx þ 12Br
R4 _RR2

ðxþ R3Þ2
;

ð18Þ

where the prime is dropped in the time. Eq. (18) is re-

duced to a set of ODEs by using a implicit central dif-

ference discretization along x. Thus,

Pe
dTi
dt

¼ 12ðxi þ R3Þ1=3 Tiþ1 � Ti�1

2D
þ 9ðxi þ R3Þ4=3

� Tiþ1 � 2Ti þ Ti�1

ð2DÞ2
þ 12Br

R4 _RR2

ðxi þ R3Þ2
; ð19Þ

where Ti is the temperature at the ith node positioned at

xi. Here D ¼ xiþ1 � xi is the mesh size. It turned out that

a fixed increment, D ¼ ðRr þ 1Þ3 � 1=N , was entirely

sufficient to obtain numerical stability in the solution

procedure, where N is the number of the nodes.

Upon substitution for S from Eq. (15), the system of

Eqs. (14) and (19) constitute an initial-value problem

with N þ 2 degrees of freedom, with initial conditions as

follows. The initial radii of the inner and outer surfaces

of the shell are fixed such that

Rðt ¼ 0Þ ¼ 1: ð20Þ

Since the fluid is initially at rest, then

_RRðt ¼ 0Þ ¼ 0: ð21Þ

The initial values for Ti follow from condition (12) and

transformation (17), to give

Tiðt ¼ 0Þ ¼ Rr þ 1

Rr

� �
ðiD þ R3Þ�1=3

þ Rr � 1

Rr
; i 2 ½1;N �: ð22Þ

A sixth-order Runge–Kutta scheme (IMSL-DIVPRK) is

applied to integrate system (14) and (19). The accuracy

of the solution was checked using Gear�s predictor–

corrector method (IMSL-DIVPAG). The results from

both methods are essentially identical when the same

time increment is used. In both methods, a tolerance of

less than 10�6 is used. That is, the norm of the local error

is controlled such that the global error is less than the

tolerance imposed. Additional accuracy assessment is

reported below.

3. Discussion and results

In this section, the evolution of the flow field and the

simultaneous heat convection are determined for a

spherical shell subject to a constant driving pressure.

The shell is supposed to be initially in equilibrium under

the action of an internal pressure and surface ten-

sion. The temperatures of the inner and outer shell

surfaces are assumed to be fixed at all time. Initially, the
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temperature distribution corresponds to steady heat

conduction within the shell. The influences of inertia,

conductivity, dissipation and surface tension on the shell

will be examined by varying Re, Pe, Br and Ca, respec-
tively. The accuracy of the numerical implementation is

also assessed. In all results reported here, the value of

the initial aspect ratio is fixed at Rr ¼ 1, which corres-

ponds to a relatively thick shell. The level of pressure is

reflected in the value of Re. The outer surface is assumed

to remain at a colder temperature, T ðS; tÞ ¼ 1, while the

inner surface at a hotter temperature, T ðR; tÞ ¼ 2. This

configuration is encountered in typical cavity growth

problems, such as during foam molding and extrusion.

3.1. Overall behavior and numerical assessment

Consider the response in thermal and flow behavior

for an inflating shell with moderately small inertia

(Re ¼ 10), and relatively negligible surface tension

(Ca ¼ 10). In this case, Br ¼ Pe ¼ 100. Fig. 1 displays

the evolution of the inner and outer radii RðtÞ and SðtÞ
with time. The response is typically of the exponential

type, and therefore emphasis will be on the early tran-

sients. The rate of growth is reflected in Fig. 2 through
_RRðtÞ and _SSðtÞ. It is clear, and as expected, that
_RRðtÞ > _SSðtÞ. In general, the inner surface moves 30%

faster than the outer surface, leading to the thinning and

eventual breakup of the shell. It is interesting to observe

that the outer surface tends to accelerate monotonically

with time, while the inner surface experiences a relatively

strong acceleration initially. The acceleration of the

inner surface, however, diminishes with time, reaching a

minimum, but picks up again for t > 1. In the long term,

the two surfaces accelerate at the same rate.

The evolution of the temperature distribution is

shown in Fig. 3, where T ðr; tÞ is plotted against r at

different time stages. The temperature tends to exhibit a

maximum at any time stage. There is a sharp increase

near the inner surface, indicating strong dissipation near

r ¼ RðtÞ. The maximum becomes increasingly localized

with time because of the thinning of the shell. However,

the temperature gradient remains consistently higher

near the inner surface. This is resulting from the pres-

ence of strong dissipation, which in turn is due to the

relative dominance of _RRðtÞ. The evolution of the tem-

perature is further understood from Fig. 4, where T ðx; tÞ
is plotted against t at different radial locations between
x ¼ 0 and x ¼ 7 (recall that the interval for x does not

change with time). The figure shows that the tempera-

ture increases generally with time, except near the inner

shell surface, where the temperature reaches a maximum

and begin to decrease. The rate of increase is not always

monotonic. In particular, the temperature tends to level

off near the inner surface, while it tends to grow rapidly

elsewhere, except near the outer surface where it remains

essentially small. However, the temperature growth rate

is uniformly the same upon inception (t ¼ 0). The in-

tricate behavior near r ¼ RðtÞ or x ¼ 0 is the result of the

interplay among convection, diffusion and dissipation.

In order to understand the behavior near the inner

surface, first note from Eq. (7) and Fig. 3 the locations
Fig. 1. Evolution of the inner and outer radii, RðtÞ and SðtÞ
with time for Br ¼ Pe ¼ 100, Ca ¼ Re ¼ 10 and Rr ¼ 1.

Fig. 2. Evolution of the rate of growth of inner and outer

surfaces of the spherical shell, for the same parameter values as

in Fig. 1.

Fig. 3. Temperature distribution across the shell at different

time stages, for the same parameter values as in Fig. 1.
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x ¼ 0:2 and 0.35 are essentially upstream of where the

maximum in temperature occurs. In this region, the

temperature gradient is very steep and positive, thus

making the convective effect dominant. Dissipation is

also significant since the velocity is large and the radius

is relatively small. Thus the convective and dissipative

terms in Eq. (7) tend to be in balance with each other,

leaving the growth in T essentially proportional to the

diffusive term. However, Fig. 3 clearly indicates that the

concavity is small near r ¼ RðtÞ so that the oT=ot re-

mains eventually constant since it behaves like

T ðr ¼ R; tÞ. At the location of the maximum in temper-

ature, the rate of growth of T is dictated by the dissi-

pative term, which for the present case (Pe ¼ Br ¼ 100)

dominates entirely the diffusive term. For a point located

further downstream, that is after the maximum in tem-

perature is reached, the convective term becomes in-

creasingly important (as r increases), but this time its

effect adds to dissipation, leading to the significant

growth rate in T that is depicted in Fig. 4.

The accuracy of the method is mainly influenced by

the spatial discretization of the energy equation. The

integration with time is handled practically to any de-

sired accuracy. It is generally found that the influence of

the mesh size in the radial direction is rather insignifi-

cant. Convergence is essentially achieved by using 50

nodes for x 2 ½0; 7�. Fig. 5 shows the influence of N on

the temperature distribution at t ¼ 1:25 as in Fig. 3. It is

observed that even with N ¼ 10, the overall temperature

distribution is captured except perhaps near the maxi-

mum; for r > 2:15. For N ¼ 20, the temperature esti-

mated at the mesh nodes is fairly accurate; however,

more resolution is needed. The distributions based on

N ¼ 50 and 100 are essentially identical.

3.2. Influence of inertia on heat transfer

In coupled heat and fluid flow, inertia stems from the

convective terms in the momentum and energy equa-

tions. The two convective effects can be isolated by

varying the Reynolds and Peclet numbers separately.

First consider the effect of fluid inertia for Pe ¼ Br ¼
100, and Ca ¼ 10. The Reynolds number is taken to

cover the range Re 2 ½10; 40�. The flow response is typ-

ically illustrated in Fig. 6, where the evolution of R and S
is displayed for various levels of inertia. Inertia is even

more influential on the rate of change of the inner and

outer surfaces, as shown in Fig. 7. The overall influence

of Re is nonlinear. The inset in the figure clearly shows

that the rate of advance increases strongly with Re in the

small range of Reynolds number, and reaches a satura-

tion level as Re increases. A similar response is observed

regarding flow dissipation. Indeed, the evolution of

TmaxðtÞ in Fig. 8 indicates that the increase in TmaxðtÞ is

higher as Re increases. There is, however, a saturation

that is reached as reflected in the inset of Fig. 8.

The influence of convective effect is illustrated in Fig.

9, where Tmax is plotted against t for Re ¼ Ca ¼ 10 and

Br ¼ 100. Here Pe is taken to vary between 100 and 400.

Fig. 5. Influence of number of mesh size on the temperature

distribution at t ¼ 1:25 for the same parameter values as in

Fig. 1.

Fig. 6. Influence of fluid inertia on the evolution of the inner

and outer radii of the shell for Pe ¼ Br ¼ 100, Ca ¼ 10, and

Re 2 ½10; 40�.

Fig. 4. Evolution of the temperature for different radial loca-

tions between x ¼ 0 and x ¼ 7, for the same parameters as in

Fig. 1.
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The figure shows that, unlike inertia, convection tends to

lower the temperature buildup. An overall assessment is

inferred from the inset. The temperature drops sharply

with Pe in the small range, but eventually reaches a

saturated level in the high range.

3.3. Influence of flow dissipation

The influence of flow dissipation is expected to be

significant. In fact, in the absence of dissipation, con-

vective effects will simply reflect the heat transport

across the shell as if only heat conduction were present.

In fact, Fig. 10 displays the temperature distributions at

different time stages for Br ¼ 0. In this case, the tem-

perature at a point across the shell does not vary with

time. The distributions in Fig. 10 correspond to steady

heat conduction over the shell thickness as the shell

decreases with time. These distributions should be

compared with those in Fig. 3 (Br ¼ 100).

The influence of dissipation is typically illustrated

in Fig. 11, where the evolution in the temperature

Fig. 10. Temperature distribution across the shell at different

time stages, in the absence of energy dissipation, for Br ¼ 0,

Pe ¼ 100, Ca ¼ Re ¼ 10 and Rr ¼ 1.

Fig. 11. Influence of energy dissipation on the evolution of the

maximum temperature, for Br 2 ½0; 400�, Pe ¼ 100,

Ca ¼ Re ¼ 10 and Rr ¼ 1. The inset shows Tmaxðt ¼ 0:85Þ versus
the Brinkman number.

Fig. 8. Influence of fluid inertia on the evolution of the maxi-

mum temperature, for Re 2 ½10; 40�, Br ¼ Pe ¼ 100, Ca ¼ 10

and Rr ¼ 1. Inset shows the behavior of Tmaxðt ¼ 0:85Þ versus

Re.

Fig. 9. Influence of the Peclet number on the evolution of the

maximum temperature, for Re ¼ Ca ¼ 10 and Br ¼ 100, while

Pe is taken to vary between 100 and 400. The inset

Tmaxðt ¼ 0:85Þ against Pe.

Fig. 7. Influence of fluid inertia on the evolution of the inner

and outer surface velocity of the shell for Pe ¼ Br ¼ 100,

Ca ¼ 10, and Re 2 ½10; 40�.
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maximum is shown for Br 2 ½0; 400�. As expected, TmaxðtÞ
increases with both t and Br. More importantly, the

increase in the temperature is linear with dissipation (see

inset). This is not surprising since the flow, and therefore

the dissipative term in Eq. (7), is decoupled from the

temperature. Thus, the dissipative term in the energy

equation plays the role of a heat source.

3.4. Influence of surface tension

Similarly to inertia, surface tension is expected to

affect significantly the dissipation within the fluid, and

therefore the temperature. However, while inertia tends

to accelerate the flow, surface tension tends to delay it.

The influence of surface tension on the heat transfer

depends solely on the square of the radial velocity. Thus

the heat transfer for a growing or collapsing shell can be

similar if the magnitude of the velocities in the two cases

is the same. However, the flow dynamics for a growing

shell can be significantly different from that of a col-

lapsing shell. Once a driving pressure is imposed, surface

tension becomes the sole parameter that dictates whe-

ther a shell will subsequently grow or collapse.

The influence of surface tension on the flow is illus-

trated in Figs. 12 and 13, where the evolution of the

radius and velocity are, respectively, shown for Re ¼ 10,

Pe ¼ Br ¼ 100, and Ca 2 ½0:1; 40�. It is generally clear

that, for a given Reynolds number, a critical Ca value

exists at which the internal (gas) pressure is permanently

balanced by surface tension; in this case, the shell does

not move for Ca ¼ 0:3 (Re ¼ 10). Fig. 12 displays the

evolution of R and S for a growing shell (Ca > 0:3), and
a collapsing shell (Ca < 0:3). Surface tension clearly

prohibits growth. There is a saturation of the effect of

surface tension for Ca > 10. The curves corresponding

to Ca ¼ 0:2 and 0.1 reflect a collapsing shell. In fact, for

Ca ¼ 0:1, the shell collapses entirely at t > 0:5. More

importantly, the velocity at which the collapse occurs is

significantly large, as shown in Fig. 13. There is a strong

acceleration for t > 0:5, which is bound to give rise to a

strong dissipation in the fluid.

In general, the critical capillary number, when no

growth or collapse occurs, is given from the equilibrium

relation that holds initially between inertia (pressure)

and surface tension effects. Under equilibrium condi-

tions, Eq. (14) reduces to

Re� 2

Ca
1

Rð0Þ

�
þ 1

Sð0Þ

�
¼ 0; ð23Þ

where Rð0Þ and Sð0Þ are given from conditions (15) and

(19) to give the relation

Re ¼ 2

Ca
Rr þ 2

Rr þ 1

� �
: ð24Þ

It is clear that when Re ¼ 10 and Rr ¼ 1, then Ca ¼ 0:3
as indicated in Fig. 12.

The influence of Ca on the evolution of the temper-

ature is depicted from Fig. 14. The correlation between

the temperature and velocity is clear. The weakest rise in

Fig. 12. Influence of surface tension on the evolution of the

inner and outer suface radii for Re ¼ 10, Pe ¼ Br ¼ 100 and

Ca 2 ½0:1; 40�. The figure indicates that the shell grows for

Ca > 0:3, and collapses for Ca < 0:3.

Fig. 13. Influence of surface tension on the rate of growth of

the inner surface for Re ¼ 10, Pe ¼ Br ¼ 100 and Ca 2 ½0:1; 40�.

Fig. 14. Influence of surface tension on the evolution of the

maximum temperature. Note that no temperature buildup oc-

curs for Ca ¼ 0:3. The inset shows Tmaxðt ¼ 0:45Þ versus Ca.
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T occurs for Ca ¼ 0:2, which corresponds to the weakest

(non-zero) velocity. Note that when Ca ¼ 0:3, surface
tension balances completely the driving pressure. In this

case there is no growth or collapse of the shell, and no

temperature buildup. Fig. 14 shows that the temperature

decreases slowly with surface tension for a growing shell,

reaching a minimum at Ca ¼ 0:3. As surface tension

becomes more significant, with Ca decreasing further,

the shell collapses and the temperature increases sharply

as indicated in the figure and the inset. This jump in T is

the result of the significant dissipative effects reflected in

Fig. 13.

4. Conclusion

The present study focuses on the transient heat

transfer during the growth and collapse of spherical

shells of a viscous Newtonian fluid, under the action of

constant driving pressure. The thermo-mechanical cou-

pling is expected to emerge in processing such as

foaming and blow molding. The influence of inertia,

viscous dissipation, and surface tension effects is par-

ticularly emphasized, with close examination of the

temperature buildup during flow. It is found that the

maximum temperature distribution exhibits a logarith-

mic dependence on Reynolds number, a parabolic decay

with Peclet number, and a linear growth with Brinkman

number shown. Surface tension adds significantly to the

buildup of temperature.
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